Keynote Speakers


Manager of the Workflows and Distributed Computing Group, Barcelona Supercomputing Center

Dr. Rosa M. Badia is the manager of the Workflows and Distributed Computing group at the Barcelona Supercomputing Center (BSC). Her current research interests include programming models for distributed computing platforms and its integration with novel storage technologies. Her group has been proposing the task-based StarSs programming model, and she is currently focused in the PyCOMPSs/COMPSs instance of this model for distributed computing platforms. This model can be used for the definition of medium-grain task-based applications of for the definition of coarse grain workflows, which can combine tasks written in other parallel programming models, such as OpenMP or MPI. The model also plays well with new concepts for persistent storage, and are integrated with the dataClay and Hecuba solutions. Her group has been very active in the participation on European funded projects. Dr Badia has published more than 200 articles in international journals and international conferences of the area.


Researcher – Centre de coopération internationale en recherche agronomique pour le développement (CIRAD)

Hervé Goëau is a computer scientist at CIRAD, the French agricultural research and international cooperation organization working for the sustainable development of tropical and Mediterranean regions, and member of the AMAP joint research unit at Montpellier in France, an interdisciplinary laboratory conducting primary and advanced applied research on plants and plant communities. His topics of interests include deep learning and large-scale fine-grained classification applied to living species identification, biodiversity informatics, ecological monitoring, scientific data management, crowdsourcing & citizen sciences. For the last ten years, he has been one of the leading researchers involved in the development of Pl@ntNet, the citizen science project renowned for its mobile plant identification apps daily used by dozens of thousands of users in the world. He annually co-organizes, within the international CLEF Initiative (Conference and Labs of the Evaluation Forum), the LifeCLEF Plant species Identification task, an ambitious challenge with several thousand species, based on the visual content and metadata analyses, that promotes machine learning and computer vision in the biodiversity informatics field. He currently works on advanced applications of machine learning to automated weed detection in cultivated fields, plant disease identification, organ detection and measurements in herbarium collections, and on a global flora plant species identification system based on millions of pictures that require distributed deep learning on GPU clusters and HPC infrastructures.


Researcher – National Laboratory for Scientific Computing (LNCC), Brazil.

Antônio Tadeu A. Gomes is a researcher at the National Laboratory for Scientific Computing (LNCC), Brazil. He is head of the Innovative Parallel finite Element Solvers (IPES) Research Group, executive officer of the Brazilian National System for High-Performance Computing (SINAPAD), and coordinator of the Steering Committee of the Santos Dumont supercomputing facility (SDumont). He received his Ph.D. in Computer Science from the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil, in 2005. His main research areas are in computer networks, distributed systems, high-performance computing, and software architecture. He is a member of the Association for Computing Machinery (ACM) and the Brazilian Computer Society (SBC).


Invited Speakers

Leonardo Bautista

Senior Research Scientist, Barcelona Supercomputing Cente

Dr. Leonardo Bautista Gomez is a Senior Research Scientist at the Barcelona Supercomputing Center where he works in multiple H2020 European projects related to resilience, energy efficiency and multilevel storage systems for high performance computing. In 2016 he was awarded with a European Marie Curie fellowship on Deep-memory Ubiquity, Resilience and Optimization. In addition, he was awarded the 2016 IEEE TCSC Award for Excellence in Scalable Computing (Early Career Researcher). Before moving to BSC he was a Postdoctoral researcher for three years at the Argonne National Laboratory, where he investigated data corruption detection techniques and error propagation. Prior to that, he did his PhD. in resilience for supercomputers at the Tokyo Institute of Technology. He developed a scalable multilevel checkpointing library called Fault Tolerance Interface (FTI) to guarantee application resilience at extreme scale. For this work, he was awarded the 2011 ACM/IEEE George Michael Memorial High Performance Computing Ph.D. Fellow at Supercomputing Conference 2011 (SC11), Honorable Mention; and a Special Certificate of Recognition for achieving a perfect score at the Supercomputing Conference 2011 (SC11) for the paper : FTI : High Performance Fault Tolerance Interface for Hybrid Systems. In Japan, he was awarded the Japanese Society for the Promotion of Science (JSPS), Research Fellowships for Young Scientists (Doctoral Course). Before moving to Tokyo Tech, he graduated in Master for Distributed Systems and Applications from the Paris 6 University, Pierre & Marie Curie. Prior to this, he obtained a Bachelor in Computer Science from the Paris 6 University, Pierre & Marie Curie.

Ignacio Laguna

Computer Scientist – Center for Applied Scientific Computing (CASC), Lawrence Livermore National Laboratory (LLNL)

Ignacio Laguna is a Computer Scientist at the Center for Applied Scientific Computing (CASC) at the Lawrence Livermore National Laboratory (LLNL), California. His main area of research is programing models and systems for high-performance computing (HPC). He is particularly interested in software correctness, program analysis, compilers, fault tolerance, and debugging. He received his PhD degree in Computer Engineering from Purdue University in 2012. He is the recipient of the ACM/IEEE-CS George Michael Fellowship in 2014, the Better Scientific Software (BSSw) Fellowship in 2019, the Hans Meuer Award for best research paper at ISC’19, and he was an R&D 100 Award Finalists in 2017. Ignacio is an IEEE Senior Member.

Paola Buitrago

Artificial Intelligence and Big Data Group Leader, Pittsburgh Supercomputing Center

Paola Buitrago leads the Artificial Intelligence and Big Data group at the Pittsburgh Supercomputing Center, which is a joint effort of Carnegie Mellon University and the University of Pittsburgh. Her group is focused on advancing and supporting the convergence of High Performance Computing (HPC), Artificial Intelligence (AI) and Big Data. Paola initiated a new platform for AI research on emerging hardware and software technologies, enabling development of advanced algorithms and modeling approaches. She is also leading PSC’s Big Data-as-a-Service (BDaaS) initiative, through which Internet-scale datasets are being integrated with supercomputing resources for cross-cutting research communities.
Paola’s diverse background includes research in deep learning, large scale data, and workflow management for high energy physics experiments at the Fermi National Accelerator Laboratory. Paola developed courses in machine learning, simulation, and optimization at her university. She is passionate about education in technology and launched an education-focused start-up.
Paola’s academic background includes a Bachelors degree in Chemical Engineering and a Bachelors in Systems and Computing Engineering. She holds a Masters from Universidad de los Andes in Bogotá, Colombia.

Daisuke Kihara

Professor – Department of Computer Science, Department of Biological Sciences, Purdue University

Dr. Kihara is a full professor in the Department of Biological Sciences and the Department of Computer Science at Purdue University, West Lafayette, Indiana. He received the B.S. degree from the University of Tokyo, Japan in 1994, and the Ph.D. degree from Kyoto University, Japan in 1999. After studying as a postdoctoral researcher with Prof. Jeffrey Skolnick he joined Purdue University in 2003. He was promoted to full professor in 2014. From 2018, he holds an adjunct professor position at Department of Pediatrics, University of Cincinnati. He has been working in various topics in protein bioinformatics. His current research projects the developments of algorithms for protein-protein docking, protein tertiary structure prediction, structure modeling from low-resolution image data, structure- and sequence-based protein function prediction, and computational drug design. He has published over 150 research papers and book chapters. His research projects have been supported by funding from the National Institutes of Health, the National Science Foundation, the Office of the Director of National Intelligence, and industry. He has served on the program committee of various bioinformatics conferences including the Intelligent Systems for Molecular Biology (ISMB) where he is a track chair in 2019. In 2013, he was named a University Faculty Scholar by Purdue University.

Etienne Decencière

Professor – Centre for Mathematical Morphology, MINES ParisTech – PSL, Research University

Dr. Decencière is senior researcher at MINES ParisTech. His current research interests are focused on image segmentation using mathematical morphology and deep learning, with applications in retinal imaging, histology and astronomy, among others. Bridging the gap between theory and practice is one of his main motivations. Most of his research is financed by industrial partners. He has been for instance in charge since 2008 of a collaboration with L’Oréal, dealing with the characterization of human skin through different imaging modalities (e.g. multiphoton microscopy, whole-slide imaging, structured-light 3D scanner). The resulting software is routinely used by L’Oréal.

Stefan Hoops

Research Associate Professor – Network, System Science & Advanced Computing (NSSAC), Biocomplexity Institute & Initiative, University of Virginia

Stefan Hoops is a Research Associate Professor in the Network, System Science & Advanced Computing (NSSAC) division at the Biocomplexity Institute & Initiative at the University of Virginia. Before joining the institute in 2018, Dr. Hoops worked at the Biocomplexity Institute of Virginia Tech (2000-2018), and served as a software designer/developer for Schumann Consulting Corporation in Germany (1995-2000). Dr. Hoops is a co-leader of the COPASI project. COPASI is a software application for simulation and analysis of biochemical networks and their dynamics. It is a stand-alone program that supports models in the SBML standard and can simulate their behavior using ODEs or Gillespie’s stochastic simulation algorithm; arbitrary discrete events can be included in such simulations. He was elected in 2006 as one of the 5 editors of the Systems Biology Markup Language (SBML), serving for the years 2007-2009 and continues to be engaged in this and other standard development effort for the life science community. Further interest of Dr. Hoops is the integration of computational modeling and immunology experimentation to characterize the immunoregulatory mechanisms underlying immune responses to enteric pathogens.

Rodrigo Mora

Associate Professor within the Faculty of Microbiology – Masters Program in Bioinformatics and Systems Biology, University of Costa Rica

Rodrigo Mora conducted his PhD studies in the field of Programmed Cell Death in Cancer at the German Cancer Research Center (DKFZ, Heidelberg), and his first postdoctoral training in Systems Biology at the Bioquant Center at the University of Heidelberg. Currently, he holds the position of Associate Professor within the Faculty of Microbiology, and the Masters Program in Bioinformatics and Systems Biology at the University of Costa Rica. Over the past five years, he has successfully established his own research group, the Systems Biology of PersonalizedTherapy, and has been responsible for supervising several PhD student, Masters students, and undergraduate students both in biological and computational fields. The University of Costa Rica is very interested to create a Program of Translational Medicine due to high availability of tumor samples in the country, which could allow him, in the future, to set up collaborations with his connections in Germany. However, it is still very hard for scientists on the fields of Cancer and Systems Biology, as this is considered basic science. International collaboration is therefore essential to succeed. His research interests include the Systems Biology of personalised cancer treatment. His research team is currently performing an in vitro test of chemosensitivity on tumors of breast cancer patients. The remaining tumoral material can be used to perfom sequencing studies looking for genomic/transcriptomic markers of resistance/sensitivity to chemotherapy and other basic research projects on the understanding of cancer biology, specially the role of miRNA and lncRNAs in cancer stability. In addition, his team is also working on the development of molecular sensors for several applications: i. detect chemotherapy resistance at the single cell level, based on sphingolipid metabolism and autophagy, ii. The study of Dengue virus pathogenesis and Dengue virus-induced cellular alterations such as autophagy and cell death mechanisms.

Verónica Melesse Vergara

HPC Engineer – Oak Ridge National Laboratory

Verónica G. Vergara Larrea is originally from Quito, Ecuador. Verónica earned a B.A. in Mathematics/Physics at Reed College and a M.S. in Computational Science at Florida State University. Verónica has eight years of experience in the high performance computing field and is currently working as an HPC Engineer at the Oak Ridge Leadership Computing Facility. In addition to providing assistance to OLCF users, Verónica is part of the systems testing team and led acceptance for Summit, ORNL’s next generation supercomputer. Her research interests include high performance computing, large-scale system testing, and performance evaluation and optimization of scientific applications. Verónica is a member of both IEEE and ACM and serves in the ACM SIGHPC Executive Committee.

Industry Speakers


Atos HPC & Quantum Senior Expert


Albert Trill is from Barcelona (Spain), and holds a Master in Science in Engineering by the Polytechnical University of Catalunya. He worked as associated professor in Algorithmics at the Higher Technical University of Engineering of Barcelona, and as a researcher in Computer Graphics and Computational Geometry. After he has held engineering positions in prestigious technology companies such as Apple, Oracle, Silicon Graphics and Bull. He currently serves as Senior Expert of HPC and Quantum Computing at Atos.


HPC Leader LatAm

Joaquim Munoz Merino has 30 years of experience in HPC. Joaquim will give the talk «Dell EMC HPC Solutions Portfolio. Making innovation real with the convergence of HPC and AI»


HPC Sales Specialist for Latin America at Hewlett Packard Enterprise

Fabio Alves did his bachelor in Mechanical Engineering at Instituto Mauá de Tecnologia and started working with HPC at Sillicon Graphics as PreSales, Solution Architect and Account Executive and is now HPC Sales Specialist for Latin America at Hewlett Packard Enterprise. With 10+ years of experience on the HPC market in Latin America on Academic, Research and Commercial markets has worked on the design of several HPC systems installed in Latin America including a system in Brazil that figured on position 95 from Top 500 List.


AI Segment Manager, Ph.D. – Academia & ISV Partnerships, Data Center Group, Lenovo USA

Jaime Puente is the artificial intelligence (AI) segment manager at Lenovo, responsible for developing and managing research collaborations with universities and business partnerships with AI ISVs worldwide, bridging research and industry. Prior to joining Lenovo, Jaime spent 14 years as director of academic outreach at Microsoft Research working on strategic research initiatives in Latin America and the U.S. Before Microsoft, Jaime worked for Commerce One, a pioneering e-commerce company and before that, he was a professor in the School of Electrical and Computer Engineering at Escuela Superior Politécnica del Litoral (ESPOL) in Ecuador.
Jaime was a Fulbright Scholar for his early engagement with academia. His academic background includes an M.S. in Computer Engineering from Iowa State University, an MBA and an Electronics Engineering degree both from ESPOL and an Educational Specialist post-master’s degree from Nova Southeastern University (NSU) in Florida, United States. Jaime holds a Ph.D. in Computing Technology in Education from NSU. His main research interests concern the use of artificial intelligence in academia and industry, statistical data analysis, and high performance computing.

Copyright © Carla 2019